Algebra II V-3
 Inverse and Joint Variation

Solve. (pg. 360)
*1) Suppose r varies jointly as s and t and inversely as the square of v. When $t=3$, and $s=18$, and $v=5, r=3.78$. Find r when $t=4$, $s=12$, and $v=4$.

Translate the following into mathematical equations.
y varies directly as x .

$$
y=k x
$$

y varies inversely as x .

$$
y=\frac{k}{x}
$$

a varies jointly as b and c.
$a=k b c$
Solve. (pg 361) F $=k \quad \lambda$

1) The frequency of a radio signal aries inversely as the wave length. A signal of frequency 1200 kilohertz (kHz), which might be the frequency of an AM radio station, has wave length 250 m . What frequency has a signal of wave length 400 m ?

$$
F=\frac{k}{\lambda} \quad f=\frac{300000}{\lambda}
$$

Greek letter lambda, λ, is the symbol used in the actual formula.

Notice that the the constant of variation is c, the speed of light.

